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Abstract

1. Colonisation is a critical process driving the abundances and diversity of species

in spatially discrete communities. Although patch size and patch quality are well

known as determinants of post-colonisation species richness and abundance, less

is known about how patch size affects colonisation.

2. Patch size and quality may not be independent, so assessment of potential inter-

actions is necessary for understanding patterns of species abundance in natural

systems. In freshwater systems, presence and identity of predators is a dominant

determinant of patch quality, with larger habitat patches often supporting larger

and more diverse predator assemblages.

3. To examine potential interactions, we manipulated patch size and quality (fish

presence/absence) using naturally colonised experimental landscapes and

assayed oviposition by Culex mosquitoes.

4. Culex restuans selected patches that were smaller, did not contain fish, and had

higher temperatures. We demonstrate that patch size, along with patch quality,

can generate patterns of abundance at the colonisation stage that are contradic-

tory to traditional patch size-based models of species distributions.
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1 | INTRODUCTION

Patch size and patch quality are important characteristics that influ-

ence species persistence, coexistence, colonisation and dispersal

(Fretwell & Lucas, 1970; MacArthur & Wilson, 1967). However,

despite their importance, there has been little investigation into

patch size and how patch size and quality interact to affect these

dynamics. Early studies considered only size and isolation of habitat

patches, as they have a long history in ecology as determinants of

species richness and abundance (Arrhenius, 1921; Cain, 1938; Glea-

son, 1922; MacArthur & Wilson, 1963). Much of the current theory

surrounding patch size and isolation is derived from the Equilibrium

Theory of Island Biogeography (ETIB) (MacArthur & Wilson, 1967),

which hypothesises that larger islands with less isolation (i.e. more

connectivity to source populations) will have greater species richness

due to higher immigration and lower extinction rates compared to

small, isolated islands. This theory gave rise to metapopulation (Han-

ski & Gilpin, 1991) and metacommunity ecology (Leibold et al.,

2004; Wilson, 1992), with the recognition of the importance of

patch size and isolation in determining species distributions in spa-

tially connected systems. These theories are not limited to islands as

islands are merely a type of patch, which exist in a variety of forms

ranging from agricultural landscapes (Fahrig & Jonsen, 1998) and

fragmented forests (Debinski & Holt, 2000; van Dorp & Opdam,

1987) to freshwater systems (Binckley & Resetarits, 2005; Laan &

Verboom, 1990) and disease hosts (Burdon, Jarosz, & Kirby, 1989;

Jennersten, Nilsson, W€astljung, & Wastljung, 1983). The wide appli-

cability of these concepts cemented patch size and isolation as fun-

damental ecological factors affecting species distributions.

The effects of patch characteristics on population sustainability

(extinction risk) and species diversity begin with their effects on

immigration rates. Higher immigration in less isolated patches is
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axiomatic, and in larger patches is generally attributed to their asso-

ciated larger capture areas (target area hypothesis) (Connor &

McCoy, 1979; Hanski, 1999; MacArthur & Wilson, 1967). While

these capture effects should be true under random colonisation,

many organisms actively choose habitat patches based upon their

perceived quality (expected fitness) (Rausher, 1983; Resetarits &

Wilbur, 1989; Singer, 1984). As outlined by the ideal free distribu-

tion (IFD), the expected fitness of patches is thought to be the ulti-

mate driver of habitat selection (Fretwell & Lucas, 1970). Patch

selection is “ideal” when information on patch characteristics is avail-

able and cost-free, whereas patch selection is “free” when move-

ment between patches is cost-free. Under this framework, we

expect optimal patch selection for fitness maximisation; however,

information on patch quality (or even size) is rarely complete or

cost-free, thus organisms rely on estimations or indirect information

on patch quality (Orians & Wittenberger, 1991). Thus, optimal patch

selection will be more frequent with easier patch detection and

assessment, along with greater dispersal capabilities of colonists.

Patches vary in their attractiveness to active colonists. Though

patch size surely plays a role in detection, and larger patches have a

greater probability of encounter, patch quality is the primary factor

in habitat selection (Fretwell & Lucas, 1970; Wiens, 1976). Resource

density (Binckley & Resetarits, 2008; Blaustein & Kotler, 1993), dis-

ease (Robertson & Hamilton, 2012), predator presence/absence

(Resetarits & Wilbur, 1989; Vonesh & Blaustein, 2010; Vonesh,

Kraus, Rosenberg, & Chase, 2009), canopy cover (Binckley & Rese-

tarits, 2007, 2009), productivity (Binckley & Resetarits, 2007) and

pesticides (Bentley & Day, 1989; Kibuthu et al., 2016; Takahashi,

2007; Vonesh & Buck, 2007) may all influence perceived patch qual-

ity. However, patch quality and patch size are seldom independent,

and changes in patch size often affect patch quality, confounding

the two, especially when limiting resources are correlated with habi-

tat area (see reviews in Haynes & Cronin, 2004; Krauss, Steffan-

Dewenter, M€uller, & Tscharntke, 2005; Rabasa, Guti�errez, & Escud-

ero, 2008). Thus, effects of patch characteristics on immigration

rates may be misattributed to either size or quality, whereas both

are important.

There is considerable experimental evidence demonstrating that

patch quality has powerful effects on colonisation rates (Binckley &

Resetarits, 2005; Franz�en & Nilsson, 2010; Mortelliti et al., 2014;

Oertli et al., 2002; Rausher, 1983; Resetarits, 2001; Resetarits &

Wilbur, 1989; Singer, 1984). In particular, predator presence is one

aspect of patch quality that has been repeatedly demonstrated to

have profound effects on colonisation rates (Chesson, 1984; Eitam &

Blaustein, 2004; Hanski & Gilpin, 1997; Kneitel & Miller, 2003; Pet-

ranka & Fakhoury, 1991; Resetarits & Silberbush, 2016; Resetarits &

Wilbur, 1989). In aquatic systems, the presence or absence of fish

has dramatic effects on species distributions, creating a strict dichot-

omy for colonists (Resetarits & Wilbur, 1989; Schilling, Loftin, &

Huryn, 2009; Wellborn, Skelly, & Werner, 1996) and a useful model

system for researchers.

Mosquitoes are useful models to study colonisation dynamics

because they disperse and colonise discrete habitat patches through

female oviposition behaviour, where females select a patch for their

aquatic larval offspring. Female mosquitoes utilise multiple sensory

capabilities and are highly sensitive to numerous aspects of patch

quality, which are assessed as they select habitats to maximise larval

performance (Bentley & Day, 1989; Day, 2016; Kiflawi, Blaustein, &

Mangel, 2003). Those of the genus Culex (Culicidae) have few (often

one) lifetime reproductive events, making oviposition site choice a

crucial fitness decision (Blaustein, 1999; Resetarits, 1996). Larval

mosquitoes are highly susceptible to predation (DuRant & Hopkins,

2008), and adults avoid predators through selective oviposition

(Chesson, 1984; Vonesh & Blaustein, 2010). Since mosquitoes are

capable of directly detecting and identifying predators via kairo-

mones (Eveland, Bohenek, Silberbush, & Resetarits, 2016; Silberbush

et al., 2010), we should expect clear avoidance of patches containing

predators and higher colonisation rates of predator-free patches.

When it comes to size, females must choose between smaller

ephemeral habitats and larger more permanent habitats (Juliano,

2009). Smaller patches are susceptible to desiccation (Juliano,

O’Meara, Morrill, & Cutwa, 2002) and strong density-dependent

effects (Fish & Carpenter, 1982; Reiskind & Lounibos, 2009), but

they are protected from predators that are more common in larger

patches (Chase & Knight, 2003; Pearman, 1995; Schneider & Frost,

1996). However, in the absence of predators, larger habitats should

offer clear advantages.

We conducted a field experiment manipulating both patch size

and patch quality to determine the influence of each factor and their

interaction on mosquito colonisation. Our experimental design

directly and independently manipulated both size and quality, hold-

ing other factors constant, allowing examination of relative effects.

To do this, we utilised mesocosms (cattle tanks) of three different

sizes (patch size) crossed with the presence and absence of fish

predators (patch quality). We then assayed oviposition habitat pref-

erences of natural mosquito populations by quantifying egg rafts

deposited in each patch.

2 | METHODS

2.1 | Study site

The study was conducted at the University of Mississippi Field Sta-

tion (UMFS) in Abbeville, MS (34.427452° N, 89.388107° W). UMFS

is a 787-acre complex situated in the Eocene hills of the interior Gulf

Coastal Plain that contains over 200 ponds along with multiple small

streams, wetlands, fields and mixed forests. At the time of the exper-

iment, day length was c. 14 h.

2.2 | Study species

Our focal species, Culex restuans, is a very abundant, generalist,

freshwater wetland breeding mosquito (Carpenter & Lacasse, 1955),

which provides a contrast with “container breeding” mosquitoes

(Laird, 1988). Culex restuans is an important vector of West Nile

virus (Andreadis, Anderson, & Vossbrinck, 2001). Adults are capable
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of dispersing over 1 km (Ciota et al., 2012), but only c. 100 m after

a bloodmeal (Greenberg, Dimenna, Hanelt, & Hofkin, 2012). Peak

activity for C. restuans occurs at dusk, when females seek blood-

meals and then search for an oviposition site (Macdonald, Madder, &

Surgeoner, 1981; Stough & Wallace, 2016). They deposit egg rafts,

as opposed to single eggs. Females readily use artificial pools for

oviposition sites, but avoid pools with aged water (Brust, 1990) and

predators (Blaustein, Blaustein, & Chase, 2005; Eveland et al., 2016).

Females prefer localities with fewer patches (Reiskind & Wilson,

2004), but nothing is known about how females respond to patch

size or related variables like patch temperature, though it has been

suggested that temperature and nutrients may interact to affect pool

attractiveness (Jackson, Paulson, Youngman, Scheffel, & Hawkins,

2005). Larval development in C. restuans is temperature (Ciota, Mat-

acchiero, Kilpatrick, & Kramer, 2014; Madder, Surgeoner, & Helson,

1983; Muturi, Lampman, Costanzo, & Alto, 2011), density (Madder

et al., 1983) and nutrient dependent (Reiskind, Walton, & Wilson,

2004), suggesting that these habitat attributes may be important to

ovipositing females.

2.3 | Experimental design

Our experiment was conducted in a large, old field at UMFS situated

20 m north and west of the nearest ponds, which contained fish.

We established six rectangular mesocosm arrays (blocks) of six pools

each (N = 36), crossing three pool sizes (1.2, 1.8 and 2.7 m diameter)

with the presence/absence of fish, specifically green sunfish (Lepomis

cyanellus: Centrarchidae) and golden shiners (Notemigonus crysoleu-

cas: Cyprinidae) (Figure 1). These two species were selected because

of their extensive distributions, generalist diets and general applica-

bility. Pools (=patch) were of the same material, colour and round

shape (Ace Roto-Mold, Hospers, IA, U.S.A.), though the largest pools

were 13 cm deeper than the other two sizes, which we compen-

sated for by filling all pools to the same depth (50 cm); pools held

c. 593, 1,334 and 3,002 L, respectively. Treatments were randomly

assigned to positions within each array. The treatments in arrays

were positioned so that an equal number of blocks had more fish

and fish-free pools on the forest side. Pools of the same size, but

opposite quality, were positioned opposite one another to maintain

constant interpatch distances of 5 m (Figure 1), and each array con-

tained alternating fish and fish-free pools. From the perspective of

colonising mosquitoes, their abilities should allow them to first

assess patch sizes from a distance followed by patch quality as they

approach and assess patch-specific semiochemicals. We began filling

pools with well water on 9 May 2016, one block at a time, complet-

ing two blocks/day, and tight-fitting fiberglass screen lids (1.3 mm2,

1.13 mm openings) were fastened onto each mesocosm. Concurrent

with filling, dried leaf litter (mixed hardwoods) was added to pools of

different size in proportion to the volume (0.9, 2.0, 4.4 kg respec-

tively), with all blocks assembled by 11 May. On 11 May each pool

received fish at an initial density of c. 2.3 g/100 L; small (1.2 m)

pools received 4 fish total (2 N. crysoleucas + 2 L. cyanellus), medium

(1.8 m) pools received 9 fish total (4–5 N. crysoleucas + 4–

5 L. cyanellus), and large pools (2.7 m) received 20 fish total (10

N. crysoleucas + 10 L. cyanellus). Because medium pools required an

uneven number of fish, each medium pool in blocks 1, 3, and 5

received 1 extra L. cyanellus, while those in blocks 2, 4, and 6

received 1 extra N. crysoleucas. To equalise biomass within blocks,

we created 8 complementary (1 “large,” 1 “small”) pairs within each

of the two species for each block (by eye to minimise stress), and

randomly assigned the appropriate number of pairs to each Fish pool

within that block, thus maintaining the same fish density and size

structure across pool sizes within blocks. Both N. crysoleucas and

L. cyanellus were haphazardly sampled from holding tanks and their

F IGURE 1 Experimental layout with
treatment summary. Circle size indicates
patch size while circle colour indicates
patch quality (dark grey = fish, light
gray = fish-free). Outline corresponds to
the tree line surrounding the field. Each
block was >10 m from the nearest
neighboring blocks and 5 m from the tree
line. All pools within a block were 5 m
from the nearest neighbouring pools
(interpatch distance)
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mean masses were estimated at c. 3.5 g. Fish subsisted on ambient

prey populations that established in the semi-natural mesocosms. On

12 May, the fiberglass lids covering the tanks were sunk below the

water surface to “open” the pools for oviposition while preventing

fish from consuming any adult mosquitoes or egg rafts. We collected

mosquito egg rafts each morning (8–9 a.m.) from 13 May to 26 May.

Pool temperatures were spot measured in the centre of the pools,

2 cm below the surface at 11 a.m. on 26 May. On 16 May, all egg

rafts collected that day were brought to the lab for rearing and sub-

sequent identification following Darsie and Ward (2005). Out of

thousands of Culex (Diptera) egg rafts identified at UMFS, c. 99%

have been identified as C. restuans (Bohenek, J R, unpublished data).

2.4 | Statistical analyses

The main unit of analysis is relative egg raft counts, which were

scaled to patch surface-area to account for passive patch capture

probability. Relative counts allow us to explore true oviposition pref-

erences as opposed to proportional increases in egg rafts with sur-

face area, which would indicate no size preference; count data were

square root transformed (√(X + 0.5)). To test for differences in the

number of egg rafts we utilised a factorial ANOVA. We also com-

pared temperatures between patch sizes with an ANOVA; however,

measuring pool temperature was not initially planned, but was con-

sidered after observing potential differences between pool sizes dur-

ing the 2 week sampling period. Thus, our temperature data is

limited and a separate experiment would be required to determine

the effects of temperature. Finally, we regressed the number of egg

rafts against patch temperature and conducted a separate ANOVA

excluding large pools to examine the effects of patch size indepen-

dent of size-related temperature differences. All analyses used R v

3.2.5 (R Core Team, 2016) and the car package v 2.1.2 (Fox & Weis-

berg, 2011) with Type III sums of squares and a = .05. Effect sizes

(partial g2) were calculated using the heplots package v 1.3.3 (Fox,

Friendly, & Monette, 2016).

3 | RESULTS

Female mosquitoes laid 1,968 egg rafts in our pools over a 2 week

period. Fitting with previous findings at UMFS, 100% of the 264

identified egg rafts were C. restuans. We removed a single large,

fish-free pool from the analysis because it was partially shaded,

3.58°C cooler than the experiment average and 2.94°C cooler than

the average of the other five pools in its block. This lone pool’s low

temperature was an outlier that highly influenced the effect of tem-

perature and was excluded from all analyses. At the time of our

measurement, patch size significantly affected patch temperature

(F2,24 = 15.61, p < .001; Figure 2). Small and medium patches, which

did not differ from each other (F1,17 = 0.04, p < .846), were warmer

than large patches (Figure 2), potentially confounding the effect of

patch size with patch temperature in large patches. However, since

we only measured temperature at the end of the experiment, we do

not know if these temperatures represent consistent differences dur-

ing the course of the experiment. Patch size (partial g2 = .6262,

F2,24 = 20.10, p < .001) and patch quality (partial g2 = .2985,

F1,24 = 10.21, p = .004) had significant effects on relative total egg

rafts, indicating clear oviposition preference for fish-free and smaller

patches (Figure 3). There was no effect of the patch size 9 patch

quality interaction on relative total egg rafts (partial g2 = .0616,

F2,24 = 0.79, p = .467), but the block effect was marginally signifi-

cant (partial g2 = .3347, F5,24 = 2.42, p = .066). Mean relative total

egg rafts in blocks ranged from 11.54 to 53.50 (34.66 � 6.20)

(mean � SE), which reflects spatial variation in mosquito activity

across the landscape at UMFS. When excluding large patches and

comparing only small and medium patches, which did not

F IGURE 2 Patch temperature (mean � SE) in relation to patch
size. Relative patch size indicates that medium and large patches are
factors larger (2.25 9 and 5 9 respectively) than small patches. At
the time of our measurement, large patches were significantly cooler
than small and medium patches

F IGURE 3 Relative total egg rafts (mean � SE) in relation to
relative patch size. Relative patch size indicates that medium and
large patches are factors larger (2.25 9 and 5 9 respectively) than
small patches. Smaller and fish-free patches consistently received
more egg rafts
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significantly differ in temperature, patch size (F1,16 = 4.57, p = .048)

and patch quality (F1,16 = 9.69, p = .007) significantly affected rela-

tive total egg rafts, while the block effect was again marginal

(F5,16 = 2.65, p = .063). For this latter analysis, the patch

size 9 patch quality interaction was highly non-significant (p > .90)

and excluded from the model. Though the regression analysis sug-

gests that some component of the preference for smaller patches

could be related to patch temperature (Figure 4), the latter analysis

calls into question whether temperature is a potential driver of the

size effect, as there was a significant egg raft difference between

small and medium patches, but no temperature difference. Because

we did not manipulate temperature, and size and temperature are

confounded, we cannot resolve this issue here.

4 | DISCUSSION

We simultaneously manipulated both patch size and patch quality to

experimentally test how each factor and their interaction affects

mosquito oviposition rates. Large, high quality (fish-free) patches

should support the greatest resource diversity, be easiest to detect

and have lowest mortality risk, thus, in accordance with ETIB and

IFD, we expected highest oviposition rates in the largest patches of

the highest quality (fish-free). Though mosquito oviposition rates

across the predator gradient (patch quality) were in accordance with

past findings (Eveland et al., 2016; Resetarits & Silberbush, 2016),

oviposition across the size gradient conflicted with our original pre-

diction. Many mosquitoes species utilise small habitat types (i.e. con-

tainer breeding mosquitoes) (Day, 2016; Juliano, 2009; Laird, 1988),

but many of those studies assayed larval abundance as opposed to

oviposition behaviour (Bradshaw & Holzapfel, 1983; Lester & Pike,

2003; Sunahara, Ishizaka, & Mogi, 2002), which are very different

given post-colonisation species sorting (Kraus & Vonesh, 2010). Mul-

tiple studies have found proportional increases in mosquito oviposi-

tion with increasing pool size (Blaustein, Kiflawi, Eitam, Mangel, &

Cohen, 2004; Harrington, Ponlawat, Edman, Scott, & Vermeylen,

2008; Saward-Arav, Sadeh, Mangel, Templeton, & Blaustein, 2016)

as would be expected under the target area hypothesis (MacArthur

& Wilson, 1967). Only Saward-Arav et al. (2016) experimentally

identified true preference for larger patches in at least one mosquito

species (Culex laticinctus). Our results provide evidence of oviposition

preference for smaller patches, which contrasts with Saward-Arav

et al. (2016) and predictions under ETIB and IFD.

Under the IFD framework, the expected fitness of each patch

should decrease for each subsequent ovipositing female in the

absence of Allee effects. Therefore, we would expect egg raft densi-

ties to remain constant across patch sizes, but we found a prefer-

ence for smaller patches. However, since we removed egg rafts after

each night of oviposition, densities on any particular night may not

have reached a required threshold to shift oviposition to alternative

patches. Though ovipositing mosquitoes avoid conspecifics (Kiflawi

et al., 2003; Reiskind & Wilson, 2004), the observed pattern in our

study produced a higher density of egg rafts in small patches, which

would lead to greater larval competition and lower expected fitness

(Agnew, Haussy, & Michalakis, 2000). Reiskind and Wilson (2004)

found conspecific avoidance in C. restuans, suggesting that larval

competition is an important factor in oviposition, and they also

found preference for small patches, but their larger “patches” were

comprised of clusters of small patches. Thus, they manipulated patch

number, not patch size, which are very different (Allen, 1987; Nicol

& Possingham, 2010).

Preference for smaller patches when larger neighbouring patches

of identical quality are available is puzzling, but could be due to an

association of patch size with predator diversity (Bradshaw & Hol-

zapfel, 1983; Sunahara et al., 2002; Washburn, 1995; Wellborn

et al., 1996), though it has recently been suggested that predators

do not mediate this pattern in mosquitoes (Westby & Juliano, 2017).

In aquatic landscapes, larger patches are more likely to contain fish

or predatory insects (Pearman, 1995; Schneider & Frost, 1996), both

of which are important mosquito predators (Blaustein, 1998; DuRant

& Hopkins, 2008). In fact, predators typically found in large aquatic

habitats preferentially prey on mosquito species that are typically

found in small, ephemeral habitats (Schneider & Frost, 1996). In sin-

gle-species experimental systems, ovipositing C. restuans have a wide

range of responses to an array of predator species, from almost

complete avoidance to no response (Bohenek, J R; et al. unpublished

data). However, natural systems rarely consist of a single predator

species, and accurate assessment of the full predator assemblage of

a patch may be difficult. Likewise, predator cue reliability should be

better in smaller patches if predator densities are low and/or preda-

tors are patchily distributed. Thus, mosquitoes, and potentially many

other aquatic insects with high susceptibility to predation, may

F IGURE 4 Linear regression depicting relative total egg rafts as
predicted by patch temperature. There was a positive linear
relationship between patch temperature and relative total egg rafts
(R2 = .33, F1,33 = 16.26, p < .001). Symbols represent different
treatments: large fish (closed circles), medium fish (closed triangles),
small fish (closed squares), large fish-free (open circles), medium fish-
free (open triangles) and small fish-free (open squares)
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actively avoid large habitat patches due to a lack of appropriate

defences and an association of large habitats with higher predator

probability and greater predator diversity. Evolutionary history may

have canalized this behaviour since mosquito larvae are air-breathers

with fast development times, enabling growth to maturity in small,

ephemeral and anoxic habitats that may preclude other predators

and competitors, and thus consistently offer optimal conditions.

However, when considering that mosquitoes can utilise kairomones

to directly assess predator presence (Petranka, Kats, & Sih, 1987; Sil-

berbush et al., 2010), this behaviour seems redundant and can

potentially lead to missed offspring growth opportunities in large,

high quality habitats. Alternatively, some predators may not be

detectable via kairomones, so avoiding large habitats may be a strat-

egy to avoid a different group of predators.

Some of the preference for smaller patches may be explained by

variation in temperature, with smaller patches (small and medium)

reaching warmer daytime temperatures (Figure 4). Mosquitoes are

attracted to chemical cues produced from bacteria decomposing

organic matter (Kramer & Mula, 1979; Lindh, Nnaste, Knols, Faye, &

Borg-Karlson, 2008; Ponnusamy et al., 2008). Jackson et al. (2005)

suggested that this process may be amplified in warmer tempera-

tures and may increase pool attractiveness to C. restuans. Though

evidence is limited, there may be a potential interaction between

patch size and patch quality, where higher temperatures represent

higher quality for offspring in the form of additional bacterial food

resources (Bentley & Day, 1989; Blaustein & Kotler, 1993; Chaves,

Keogh, Vazquez-Prokopec, & Kitron, 2009) and faster development

rates (Ciota et al., 2014; Madder et al., 1983; Muturi et al., 2011).

Our temperature data is limited and may not be representative of

temperature patterns during the entire experiment, especially at

night when small and medium patches cool faster compared to large

patches. However, peak mosquito activity occurs around dusk (Mac-

donald et al., 1981; Stough & Wallace, 2016) and accrued daytime

temperature differences may still be present before significant cool-

ing occurs, but our data is insufficient to comment further.

Colonisation of freshwater patches embedded in terrestrial matri-

ces by organisms with complex, multistage life cycles offers an ideal

model system for investigating patch dynamics in metapopulation

and metacommunity ecology. These habitats are indeed “islands” that

harbour a disproportionate amount of biodiversity relative to their

percent land cover (Dudgeon et al., 2006), illustrating both their com-

plexity and suitability for answering questions concerning community

assembly. There has been a growing body of literature suggesting an

overriding importance of patch quality in driving colonisation rates

(Dennis & Eales, 1997; Fleishman, Ray, Sj€ogren-Gulve, Boggs, & Mur-

phy, 2002; Mortelliti, Amori, & Boitani, 2010; Resetarits & Binckley,

2013; Summerville & Crist, 2001). Patch quality can be divided into

abiotic and biotic components, which are neither spatially nor tempo-

rally constant. We have shown here that both biotic (predator pres-

ence) and abiotic (size) factors can simultaneously influence active

colonists through direct effects or indirectly by interacting with the

environment, as in the case of patch size and temperature. There is

considerable evidence that predators affect colonisation rates

(Bentley & Day, 1989; Blaustein & Kotler, 1993; Chesson, 1984;

Resetarits & Wilbur, 1989), but predators are often implanted in

experiments as constant properties of habitat quality (as we did here)

when they themselves are in fact colonists. The patch-dynamic para-

digm (Leibold et al., 2004) and habitat matching perspective (Resetar-

its & Silberbush, 2016) in metacommunity theory have addressed the

persistence of multiple species in patchy landscapes via differences in

dispersal (patch-dynamic) and/or colonisation rates (habitat match-

ing). The patch dynamic paradigm applies to our system since fish,

which are major components of patch quality, lack the life history

traits of vagile insects that allow for dispersal across the terrestrial

matrix and rapid colonisation of new habitat patches. The habitat

matching perspective requires species interactions to occur during

colonisation, not post-colonisation, via cues (e.g. predator-released

kairomones) that directly impact colonisation rates. Therefore, species

interactions can occur without species co-occurrence in the habitat

matching perspective. Thus, mosquitoes can avoid patch extinction

by choosing predator-free habitats and “staying ahead” of dominant

predators (Kraus & Vonesh, 2010). This relationship illustrates the

important role that priority effects and early colonisation have on

community composition (Alford & Wilbur, 1985; Chase & Leibold,

2003; Vonesh et al., 2009; Wilbur & Alford, 1985).

Patch size and isolation have been considered important factors

determining species distributions and abundances for decades

(Arrhenius, 1921; Cain, 1938; Gleason, 1922; MacArthur & Wilson,

1963), but not until decades later has experimental work begun to

examine the effects of patch quality and their interactions with size

and isolation on habitat selection (Bentley & Day, 1989; Blaustein &

Kotler, 1993; Fahrig & Jonsen, 1998; Resetarits & Wilbur, 1989).

Though our study consisted of a single species, mosquitoes may con-

stitute one taxa that does not support the species–area relationship.

Species, or perhaps groups of species, may have specific preferences

that can be explained by correlating niche characteristics with patch

characteristics. Understanding the importance of patch characteris-

tics to particular species or groups of species will help us understand

the influence of both patch quality and patch size on colonisation,

and assess their importance for species conservation, or control, in

an increasingly fragmented and warming world (Hodgson, Thomas,

Wintle, & Moilanen, 2009).

Many organisms actively select habitats based upon their per-

ceived quality and size. We provide evidence that some character-

istics of patch quality and size interact to reverse expectations

concerning colonisation rates. Despite being a generalist wetland

species, C. restuans actively chose small, high quality (fish-free)

habitats versus larger high quality patches. The actual selective

forces driving this preference are unknown, but may include

greater tolerance of small, ephemeral habitats relative to predators

and competitors, lack of anti-predator defenses, and the association

of greater predation risk with larger aquatic habitats. One of the

main goals of ecology is to identify the mechanisms that create

and maintain species distributions and biodiversity, and understand-

ing the contributions of both pre and post-colonisation community

assembly processes within a broadly spatial (metacommunity)
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context are critical to this understanding (Chesson, 2000; Leibold

et al., 2004).
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